
Finding Placement-Relevant Clusters With Fast
Modularity-Based Clustering

Mateus Fogaça+, Andrew B. Kahng†‡, Ricardo Reis+∗, Lutong Wang‡

†CSE and ‡ECE Departments, UC San Diego, La Jolla, CA, USA
+PGMicro/∗PPGC, Instituto de Informática, Universidade Federal do Rio Grande do Sul

{abk, luw002}@ucsd.edu, {mpfogaca, reis}@inf.ufrgs.br

ABSTRACT

In advanced technology nodes, IC implementation faces increasing

design complexity as well as ever-more demanding design sched-

ule requirements. This raises the need for new decomposition ap-

proaches that can help reduce problem complexity, in conjunction

with new predictive methodologies that can help avoid bottlenecks

and loops in the physical implementation flow. Notably, with mod-

ern design methodologies it would be very valuable to better predict

final placement of the gate-level netlist: this would enable more

accurate early assessment of performance, congestion and floorplan

viability in the SOC floorplanning/RTL planning stages of design. In

this work, we study a new criterion for the classic challenge of VLSI

netlist clustering: how well netlist clusters “stay together” through

final implementation. We propose use of several evaluators of this

criterion. We also explore the use of modularity-driven clustering

to identify natural clusters in a given graph without the tuning of

parameters and size balance constraints typically required by VLSI

CAD partitioning methods. We find that the netlist hypergraph-

to-graph mapping can significantly affect quality of results, and

we experimentally identify an effective recipe for weighting that

also comprehends topological proximity to I/Os. Further, we empir-

ically demonstrate that modularity-based clustering achieves better

correlation to actual netlist placements than traditional VLSI CAD

methods (our method is also 4× faster than use of hMetis for our

largest testcases). Finally, we show a potential flow with fast “blob

placement” of clusters to evaluate netlist and floorplan viability in

early design stages; this flow can predict gate-level placement of

370K cells in 200 seconds on a single core.
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1 INTRODUCTION

Modern Systems-on-Chip (SoCs) aggregate billions of transistors

within a single die, and drivers ranging from mobility to deep learn-

ing suggest that the Moore’s-Law scaling of design complexity will

continue [39]. EDA tools are continually challenged to incorporate

new strategies to scale tool capacity without sacrificing quality of re-

sults or overall design schedule. Moreover, despite substantial R&D

investments by the EDA industry, costs of IC design (engineers,

tools, schedule) continue to rise. A recent keynote by Olofsson [27]

asks, “Has EDA failed to keep up with Moore’s Law?”

It is well-known that the ability to predict downstream outcomes

of physical implementation algorithms and tools can enable reduc-

tion of loops (iterations) in the design flow, thus saving runtime and

schedule [20]. The paradigm of physical synthesis is still the major

success story along such lines, but this paradigm is now over two

decades old. The recent DARPA Intelligent Design of Electronic

Assets (IDEA) program [38] highlights the cost crisis of modern IC

design, and seeks to develop a framework capable of performing

the complete RTL-to-GDSII flow without human interaction in 24

hours [27] [38]. New tools that can help avoid future failures (con-

gestion, failed timing, etc.) while still in the early stages of floorplan

definition or RTL planning appear mandatory to achieve the IDEA

program goal.1

In this work, we seek to identify clusters of logic in a given

gate-level netlist that will remain together throughout the physical

implementation flow. (As discussed below, this is a fundamentally

different criterion than the min-cut or Rent-parameter criteria of

previous clustering methods in VLSI CAD). We envision that such

a clustering capability will help enable new predictors of perfor-

mance and congestion during early physical floorplanning and RTL

planning. For example, gates within the same cluster would be

known to have spatial locality, informing synthesis, budgeting and

global interconnect planning optimizations. And, if combined with

“blob placement” of clusters, fast evaluation of netlist and floorplan

viability could be achieved.

Limitations of existing clustering approaches. Clustering

is a universal strategy for problem size reduction and for helping to

enforce “known-correct” structure in solutions. Clustering has been

used for many years in a wide range of EDA applications, includ-

ing placement [29], clock tree synthesis [30] and, more recently,

grouping of instances into different power domains [3]. While many

1This is a long-standing challenge to design productivity and the EDA industry. That
so many commercial RTL planning and “RTL signoff” efforts have been made over the
past 25 years (Tera Systems, Aristo, Silicon Perspective, Atrenta SpyGlass-Physical,
Oasys, etc.) indicates the difficulty of this challenge.



clustering methods for VLSI have been proposed, they have largely

focused on net cuts (hyperedge min-cut, cluster perimeter, Rent

parameter [41], etc.). Further, existing heuristics typically require

design-dependent tuning and suboptimal heuristics. For instance,

the well-known multilevel Fiduccia-Mattheyses [9] implementa-

tions hMetis [21] and MLPart [4] require a priori the target number

of partitions as an input, and each aims to balance the number of

vertices or total vertex area across the partitions, which conflicts

with the min-cut objective.

Our approach. Among the contributions of this work, we men-

tion two broad aspects. The first aspect is the evaluation and ap-

plication of community detection algorithms within the VLSI CAD

context. Community detection is a comparatively recent class of

graph clustering methods used to find densely-connected nodes in

large networks such as those arising in social media, telecommuni-

cations and bioinformatics [12]. Community detection methods rely

on metrics that help identify natural clusters inside graphs, notably,

the modularity metric [26]. Our study centers on Louvain [2], a

well-known fast and efficient modularity-based graph clustering

algorithm with near-linear runtime in sparse graphs. Louvain can

cluster graphs with up to 700M edges within 12 minutes, using a

single thread. The second aspect is our study of new measures of

the correlation between a netlist clustering method and the actual

placement of netlists. The absence of previous work in this vein

may be due to the fact that previous clustering techniques have

aimed to drive placement algorithms instead of predicting them

(i.e., the final evaluation of a clustering technique was the quality

of the placement itself). We study three classical concepts from

computational geometry to evaluate this correlation: convex hulls

(CH), alpha shapes (AS), and Delaunay triangulations (DT) [25]. The

primary purpose of these techniques is to retrieve the geometric

shape of a set of scattered points, a goal that correlates very closely

to the concept of a cluster. To compare different clustering results,

we apply the Davies–Bouldin index (DBi) [7], which is traditionally

used to evaluate clusters given a “distance function”. For spatial

data, such as placement of standard-cell instances, this function

can be the distance between instances in the placement.

Our contributions are summarized as follows.

(1) We employ modularity-based clustering in conjunction with

VLSI-relevant graph edge-weighting to predict groups of

logic gates that will remain together through the stages of

physical implementation – without the need for user tuning.

(2) We explore the use of convex hulls, alpha shapes, and Delau-

nay triangulations to visualize and measure the correlation

between the netlist clustering and the “ground-truth” actual

placement. We also adopt the Davies–Bouldin index [7] to

compare different clustering results.

(3) We perform experiments showing 20% better clustering qual-

ity on average for Louvain [2] versus the traditional VLSI

netlist clustering tool hMetis [21], with 4× faster runtime

than hMetis for our largest benchmark.

(4) We demonstrate an experimental flow that performs fast

“blob placement” of clusters as a potential basis for future

early-stage netlist and floorplan evaluation. Our flow can

closely predict the actual gate-level placement of the leon3mp

testcase (370K instances) in 200 seconds.

The remainder of this paper is organized as follows. Section 2

gives an overview of the existing literature on VLSI netlist cluster-

ing and discusses several works on modularity-based clustering.

Section 3 formally defines our objective, metrics, and experimental

implementation details, while Section 4 presents our experimen-

tal results. Section 5 introduces the idea of quick floorplan and

placement evaluation using (modularity-based) clusters. Finally,

Section 6 gives conclusions and several directions for our ongoing

and future work.

2 RELATEDWORKS

We now give a brief sampling of relevant works in two literatures:

VLSI netlist partitioning, and community detection.

2.1 VLSI Netlist Partitioning

Netlist partitioning is a fundamental step within a broad spectrum

of EDA tools. Alpert and Kahng [1] give a four-way classification

of techniques according to underlying computational approach, as

follows.

Move-based approaches aim to improve an initial feasible solu-

tion through iterative local perturbations such as pair-swap or shift-

ing a single vertex to another partition. The pass-based heuristic

structure of Kernighan-Lin (KL) [22] along with the vertex-shifting

move structure of Fiduccia-Mattheyses (FM) [9] are at the core of

such methods.

Geometric representation-based approaches exploit geomet-

ric embeddings of circuits to achieve improved cluster quality and

runtime. Hall [15] gives an early spectral approach, achieving multi-

way partitioning solutions through quadratic placement and vertex

orderings induced from eigenvectors of a netlist-derived discrete

Laplacian matrix. Ou and Pedram [28] propose a two-phase min-cut

strategy that comprehends timing constraints. Iterated quadratic

programming is used to find an initial embedding of the design,

and gate replication is subsequently applied if timing constraints

are found to be too strict.

Combinatorial formulations encompass techniques such as

network flows and mixed integer-linear programming that can

capture complex objective functions and constraints. E.g., Yang and

Wong [37] propose an iterated max-flow formulation to address

the balanced bipartition problem. More recently, Blutman et al. [3]

address netlist partitioning for stacked-domain designs, also using

a flow-based framework.

Clustering approaches are often taxonomized as being either

bottom-up or top-down. Bottom-upmethods start with eachmodule

being an individual cluster, with clusters being iteratively merged

until a given condition is satisfied. Top-down methods start with a

single cluster and iteratively split clusters into two or more (smaller)

clusters. Hybrid methods, awareness of timing and other concerns,

etc. abound. E.g., Hagen and Kahng [14] perform clustering by

integrating a random-walk algorithm with iterative FM. Sze and

Wang [34] use a graph contraction technique to maintain delay

information among different lower levels of a performance-driven

clustering flow. Alternatively, Kahng and Xu [19] extend traditional

FM to directly eliminate or minimize “distance-k V-shaped nodes”

in the bipartitioning solution, achieving a tradeoff between cutsize

and path delay.



2.2 Community Detection

The size of hypergraph and graph instances has been steadily in-

creasing not only in VLSI netlists, but also in fields such as data

science, social networks, and bioinformatics. This has led to the

development of new algorithms that can quickly process and cluster

huge graphs. Shiokawa and Onizuka [33] taxonomize such com-

munity detection algorithms into three categories: edge-cut based,

modularity-based, and structural similarity. The edge-cut based cat-

egory comprehends the same techniques as move-based approaches

in the taxonomy of [1], so we do not repeat the discussion of Sec-

tion 2.1.

Modularity-based clustering attempts to overcome a funda-

mental deficiency – namely, lack of any theoretical underpinning

– of the many previous techniques that perform ad hoc minimiza-

tion of the number of edges crossing between clusters, followed by

improvement of clustering solutions with various heuristics. The

seminal modularity metric proposed by Newman and Girvan [26]

measures the quality of the current solution using the difference

between the current solution and a random graph. Moreover, as

noted above, many classical approaches assume or require a pre-

defined and fixed number of clusters. Blondel et al. [2] propose an

effective modularity-based method, called Louvain, which can au-

tomatically cluster a 700M-edge graph into a natural set of clusters,

within 12 minutes. These traits make Louvain an attractive tech-

nique, applied today in many applications such as social media [33].

In [31], Shiokawa et al. describe another fast modularity-based algo-

rithm employing incremental segregation; this method can cluster

a hundred million-node graph in under five minutes.

Structural Similaritymethods address a weakness of modula-

rity-based clustering known as resolution, i.e., thatmodularity-based

clustering may fail to detect small clusters in large graphs. The chal-

lenge of resolutionwas first noted by Fortunato and Barthélemy [11].

Xu et al. [36] propose the structural similaritymetric which enables

finding of densely connected clusters, special role nodes, hubs and

outliers. The SCAN++ [32] algorithm can comprehend these topo-

logical characteristics with runtime that is linear in the number of

graph edges. However, the computational cost of structural similar-

ity is higher than that of modularity [33].

In our present work, we employ the widely-used VLSI clustering

tool hMetis [21], and we apply the fast and effective modularity-

based Louvain algorithm in the EDA context. In applying Louvain, a

key issue is that VLSI netlists are hypergraphs, while community de-

tection methods have been applied to graphs. As we discuss below,

the success of modularity-based clustering for VLSI strongly de-

pends on (i) the hypergraph-to-graph mapping used, and (ii) means

of capturing structural ‘hints’ (I/Os, timing, etc. - cf. [5]) from the

VLSI netlist structure.

3 METHODOLOGY

In this section, we first describe the problem statement and metrics

for clustering evaluation. We then describe Louvain-based cluster-

ing based on a graph model of the netlist hypergraph.

3.1 Problem Definition

In this work, we use the term cluster to refer to a group of densely-

connected instances such that the number of the interconnections

Table 1: Notations.
Term Meaning

DBi Davis-Bouldin metric

n Number of clusters

σi
Average distance from the cluster elements to the
centroid of cluster i

ρi Centroid of cluster i

l (ρi , ρj ) Distance between the centroids of
two clusters i and j

Q Modularity value

Ai j Sum of weights of inter-cluster edges between clusters i and j
ki Sum of all weights of edges connected to cluster i
ci Cluster of index i

δ (ci , cj )
Function that receives as input two clusters
and returns 1 if they are connected, and 0
otherwise

ph Number of pins of net h
wh Weight of net h
wh,1 Clique weight of net h

wh,2 Topological depth weight of net h

d (I ) Topological distance to the closest input

d (O ) Topological distance to the closest output

among elements inside the group is much higher than the number

of connections spanning different groups. The process of finding

the clusters of a netlist is called clustering. Our goal may be stated

as follows: Given (i) a mapped netlist and (ii) information about

the standard cell library, find clusters containing instances that

are expected to remain close to each other along the stages of the

implementation flow. Since there is no formal definition of what is

the nature of a good clustering to predict placement, we propose

and discuss metrics below. The notations used in this section are

summarized in Table 1.

3.2 Metrics for Clustering Evaluation

In this subsection, we describe approaches to define cluster shapes,

as well as clustering evaluation metrics.

Cluster shapes. One intuitive approach to measure the correla-

tion between the clusters and their actual placement is to retrieve

their shapes for visualization and density measurement. In compu-

tational geometry, many applications need to restore the geometry

from a set of scattered points. If we consider each cell as a sin-

gular point, the problems become very similar. We can represent

the geometry of a given cluster using its convex hull [25], i.e., the

minimum convex polygon that contains the center of all cells. Once

the convex hull is computed, we calculate its utilization as the total

cell area divided by the hull area. If the utilization is lower than a

threshold, we remove the points comprising the hull and recom-

pute the hull. In this work, we define a threshold of 64% utilization

and set the maximum number of times the process can repeat as

25. We call this process “shelling” and depict an example in Fig-

ure 1. Figure 2(a) depicts a “ground-truth” placement along with

a cluster, with cells colored according to their clusters. Figure 2(b)

draws the corresponding convex hulls. However, if we examine the

highlighted blue cluster in Figure 2(b), we see that convex hulls do

not offer a compelling prospect. The hull fails to convey the bad

clustering outcome and has a low utilization of 38%.

Alpha shapes [40] [8], examples of which are shown in Fig-

ure 2(c), are a type of “shape formed by a pointset” wherein a

parameter alpha defines the squared radius of a circle that is used

to carve away space around the given points. The remaining space



(a) (b)

Figure 1: The process of “shelling” the cluster shape. Figure

(a) shows a cluster with total cell area equal to 24.2 × 106μm2

and shape area equal to 39.8×106μm2. Thus, the utilization of

the cluster is equal to 60.7%. The cluster’s “shell” is the set

of points that compose the shape. In (b), the cluster shape

is recomputed after removing the shell from (a). The final

shape has area equal to 36 × 106μm2 and utilization equal to

66.7%.

(a) (b)

(c) (d)

Figure 2: Different approaches to correlate clusters with the

placement for the circuit ispd18_test2 [24]: (a) the placement

with each instance colored according to its cluster, followed

by (b) the convex hulls; (c) the alpha shapes; and (d) the De-

launay triangulations of the clusters.

comprises the alpha shape of the pointset.2 Alpha shapes are ap-

pealing in that – for appropriately chosen alpha – they provide

more accurate representations of pointsets than do convex hulls.

In the following, for the testcases we study, where dimensions of

layout regions are in the 150μm to 500μm range, we empirically

use alpha = 2500μm2. In Figure 2(c), we see that the alpha shape

reveals how the blue cluster discussed earlier is clearly divided into

two pieces, each of which is dense with utilization of ∼66%.
Solution Evaluation. Convex hulls and alpha shapes are useful

for visual and manual debugging. For solution evaluation, we pro-

pose two criteria. The first criterion is derived from the Delaunay

triangulation (DT), depicted in Figure 2(d). The DT is the geometric

2When alpha =∞, the alpha shape is the convex hull of the pointset (i.e., the convex
hull is a special case of alpha shape). When alpha = 0, the alpha shape is the set of
points of the pointset.

(a) DBi = 7.84 (b) DBi = 12.60

(c) DBi = 35.86 (d) DBi = 2.29

Figure 3: Visual comparison of different clustering solu-

tions, with and their DBi values indicated.

dual of the Voronoi diagram over a given pointset. From the DT,

we extract statistical data from the distribution of edge sizes. For

our second criterion, recall that the main goal of this work is to

predict groups of logic gates that will remain together through the

stages of physical implementation. This goal correlates well with

the goal of spatial clustering techniques. Therefore, we adopt the

the Davies–Bouldin index (DBi) [7], traditionally used for spatial

clustering evaluation, as a second indicator of cluster quality. The

DBi is defined as:

DBi =
1

n

n∑
i=1

arдmaxi�j

(
σi + σj

l(ρi , ρ j )
)

(1)

The DBi consists of a numerical value that indicates how well-

clustered is a given set of elements in a spatial region. A smaller

value of DBi indicates a better clustering.

We illustrate the DT and DBi quality criteria using the four clus-

tering solutions in Figure 3 with 18 clusters each. The distributions

of DT edges are shown in Figure 4. Following its premise, DT en-

ables a good way to analyze the edge length distribution of the

clusters but fails to capture the gap in partition sizes from Fig-

ure 3(c). The largest partition in Figure 3(c) has 22K cells in contrast

to the average of 5K in the other solutions. The values of DBi are as

expected from the visualization perspective, where a smaller value

of DBi indicates more distinct clusters as shown in Figure 3(d).

3.3 Modularity-based Clustering

The modularity metric [26] measures the quality of a clustering

solution given a network graph and the set of clusters. It consists

of a scalar value ranging from -1 to 1; higher values imply better

clustering quality. The modularity metric is formally expressed as

Q =
1

2m

∑
i, j

[
Ai j −

kikj

2m

]
δ (ci , c j ) (2)



Figure 4: The boxplot of edge sizes from the DT of the clus-

tering solutions from Figure 3.

where the value ofm is computed asm = 1
2

∑
i j Ai j .

Many methods, such as the Louvain algorithm, apply modularity

as an objective function. As previously mentioned, our present

work applies Louvain to perform modularity-based clustering of

netlists.3 This is in contrast to the existing VLSI clustering literature

of essentially because of two features:

• The user does not need to calibrate the number of clusters,

nor define any stopping criteria for clustering, since these

are automatically captured by the modularity metric; and

• The Louvain algorithm does not impose, nor require, any

area/edge balancing constraints.

3.4 Graph Model of Netlist

In most of the optimization steps, the netlist is expressed as a direct

hypergraphG = (V ,E), whereV is the set of vertices that represent

the instances and E is the set of the direct hyperedges that represent

the nets. Some techniques, such as Louvain, cannot handle the

notion of hyperedges. Consequently, a translation method to a

given netlist representing a hypergraph by a weighted graph is

needed. The clique model is often used in a variety of applications.

The clique model replaces the hyperedge by a complete graph, i.e.,

every pair of vertices is connected by a single edge. To “correctly

represent” nets of different sizes, edge weighting techniques are

required. Ihler et al. [17] prove that there is no perfect weighting for

the clique model, but previous works frequently use edge weights

as wh = 1/(ph − 1), where ph is the number of pins in the net.

However, using the traditional clique decomposition is usually not

enough to capture all the nuances necessary to match the clustering

with actual placement. Our experiments show that giving higher

weights to edges closer to I/O pins improves the quality of the

clustering. Therefore, we also add a weighting scheme based on

topological depth aiming to keep cells closer to I/Os in the same

cluster. Specifically, we define the edge weights as:

wh,1 =
1

ph − 1
(3)

wh,2 = arдmin((d(I )), (d(O))) (4)

3We note that applying the modularity metric within classic VLSI partitioning methods
would lose the “automatic” qualities inherent in the Louvain algorithm. In this sense,
our work separately benefits from use of the modularity metric and use of the Louvain
algorithm.

(a)

(b) (c)

Figure 5: Netlist modeling.

Table 2: Benchmarks and attributes.
Benchmark Insts Nets I/Os

jpeg_encoder 42293 46402 49

ldpc 43965 46741 4100

netcard 251306 253145 333

leon3mp 371549 370706 1849

wh =
1

wh,1(wh,2 + 1)
(5)

Figure 5(a) depicts a netlist with two input ports, four instances,

and one output port. The number above each instance represents the

topological distance to the closest I/O. Figure 5(b) shows the equiva-

lent graph using the traditional clique model, in which the number

related to each edge represents its weight. Finally, Figure 5(c) in-

tegrates the notion of I/O proximity according to Equation (5). In

Subsection 4.1 we present experiments discussing the impact of

adding netlist information. In future works, we also plan to explore

timing information in the graph modeling.

4 EXPERIMENTAL RESULTS

We implement our modularity-based clustering approach using

Rsyn [10] [44] and run all experiments on an Intel Xeon E5-2695

dual-CPU server at 2.1GHz with 256GB RAM. Our analyses are

performed in a set of open design blocks [42] synthesized using a

standard industrial tool flow and a commercial 14nm enablement.

Table 2 presents the number of instances, nets, and I/Os of each

testcase. We first show how the Louvain algorithm has been en-

hanced to cope with our problem through the addition of design

information in the netlist graph. Next, we compare the efficiency of

our methodology to an existing VLSI clustering technique. Finally,

we perform experiments to study the robustness of our formulation

for different design floorplans.

4.1 Experiment 1: Evaluation of different
Graph Models

In our first experiment, we compare the edge-weighting model

from [23] with [16][35][13], described in Table 4, as replacement

alternatives for Equation (3). Table 4 shows the values of DBi for

each approach alone (column A) and with I/O proximity informa-

tion (column I/O) of Equation (5). Tsay-Kuh is the most promising

alternative alone, followed by Lengauer. We find that the addition

of higher weights to nets closer to I/Os improves the quality of the

solutions by 28% on average. Lengauer is the most promising of



Table 3: Description of net weighting alternatives.
Name Weight per edge Rationale

Lengauer [23] 1/(pi − 1) The total weight of the net
cut to be at least one.

Huang [16] 4/(pi (pi − 1)) The expected weight of a
net cut to be one.

Tsay-Kuh [35] 2/pi Minimizes the squared
wirelength of the net.

Frankle-Karp [13] 2/p1.5
i

Minimizes the worst
deviation from the square
of the spanning tree.

Table 4: Netlist tuning.

Design
[23] [16] [35] [13]

A I/O A I/O A I/O A I/O

jpeg_encoder 2.1 1.9 6.7 6.4 2.9 2.2 2.2 1.3

ldpc 3.0 2.3 44.5 47.2 2.7 2.3 17.3 3.0

netcard 4.6 2.0 11.1 2.3 1.9 2.7 8.3 3.7

leon3mp 1.2 1.0 68.0 63.8 1.1 1.0 1.4 1.2

Avg 2.7 1.8 32.6 29.9 2.1 2.1 7.3 2.3

these approaches with I/Os proximity information, outperforming

Tsay-Kuh by 14%.

4.2 Experiment 2: Comparison with
Traditional VLSI Clustering Methods

Here we discuss the correlation between our clustering formulation

and the actual cell placement compared with the traditional min-cut

clustering tool hMetis. As mentioned, one of the key advantages

of modularity-based clustering is the absence of input parameters,

so now we reveal details of how we run the other tool in order

to have a fair comparison. hMetis requires two parameters: (i) the

number of clusters and (ii) the unbalance factor.4 First, we run

hMetis targeting 16, 32, and 64 clusters using 2-way partitioning

with unbalance factors of 10%, 20% and 40%. For each benchmark,

we pick the runs with closest number of clusters to the Louvain

result and compare with all unbalance factors. Second, we use

hMetis k-way partitioning to find the same number of clusters as

Louvain with unbalance factors of 10%, 20% and 40%.

We first analyze the values of DBi for both tools. Table 5 compares

the number of clusters and values of DBi for Louvain and each run

of hMetis. While Louvain presents an automatic behavior, hMetis

shows a large gap in DBi depending on user tuning. For instance,

in leon3mp there is a gap of 4× in DBi between unbalance 20% and

40% using 2-way partitioning. Louvain outperforms the best runs of

hMetis in ldpc and leon3mp by 48% and 30%, respectively. The best

runs of hMetis, in netcard and jpeg_encoder, outperform Louvain

by 51% and 28%. On average, Louvain shows 20% better results for

DBi.

One of the key advantages of Louvain is its almost linear runtime

in sparse graphs. In Table 6, we present the runtimes of the exper-

iments of Table 5. Louvain is 5.6× faster than the fastest hMetis

run for the smallest benchmark, jpeg_encoder (13.5s). In the largest

benchmark, leon3mp, Louvain is 4.1× faster than the fastest hMetis

run (302.5s). On average, Louvain is 6× faster than hMetis.

4In hMetis, the unbalance factor is an integer value ranging from 1 to 49 and represents
the percentage of difference allowed among its partitions in terms of number of vertices.

4.3 Experiment 3: Robustness With Respect to
Design Floorplan

In this subsection, we show the robustness of Louvain using dif-

ferent floorplan configurations. We run the P&R flow with 1:1 and

2:1 floorplan aspect ratios and measure the difference in DBi. Note

that different shapes lead to different clustering results since it af-

fects buffering and logic restructuring. Furthermore, the DBi metric

relies on the distance of the clusters, so an increased DBi in 2:1

floorplans is expected. Table 7 shows the increase in values of DBi

for Louvain and hMetis in the 2:1 floorplan for the different floor-

plans. Furthermore, 2:1 floorplans present an average increase of

44% and 27% in DBi for Louvain and hMetis, respectively, showing

that hMetis is 17% more stable. Figure 6 shows clustering results

for Louvain with the different aspect ratios. Despite the increase in

DBi, the number and shapes of the clusters for both aspect ratios

are visually similar.

5 CLOSING THE LOOP: POTENTIAL
INTEGRATIONWITH ‘BLOB PLACEMENT’
FOR EARLY PLANNING

The results of the previous section suggest that modularity-based

clustering can achieve stronger correlation with the eventual netlist

placement, when compared to a traditional VLSI netlist clustering

approach. In this section, we “close the loop” with placement: we

demonstrate how the modularity-based clustering is a promising

foundation for extremely fast placement and potential assessment

of netlist and floorplan early in the physical implementation flow.

We have developed a simple experimental flow to predict final

placement using (i) modularity-based clustering without any user

configuration or tuning, and (ii) a “blob placement” step that per-

forms cluster placement and shaping. The first step of our flow

maps the flat gate-level netlist to a graph representation as de-

scribed above, and then feeds this graph to Louvain. The output of

Louvain is an initial set of clusters determined naturally according

to the modularity criterion; we call these initial clusters root blobs.

The next step of our flow is to hierarchically break down the

root blobs into smaller blobs (i.e., clusters), also using Louvain for

modularity-based clustering. When the granularity is sufficiently

small (in our implementation, we continue to break down the largest

blobs until every blob has < 5K instances), we create a new netlist,

consisting of the current set of blobs, which we refer to as leaf blobs.

The nets of the new netlist are induced based on the cell instances

that belong to each leaf blob. We assign higher weights to intra-root

blob nets, i.e., nets that connect leaf blobs that originate from the

same root blob. We also assign higher weights to nets that connect

leaf blobs to I/Os. In our experiments, nets connecting inter-root

blobs have weight = 1, nets connecting intra-root blobs have weight

= 4, and nets that connect to I/Os have weight = 400. These values

have been empirically determined.

Figure 7 depicts the outcome of our proposed flow for the two

large testcases netcard and leon3mp. Netcard and leon3mp have 21

and 30 root blobs, and 187 and 405 leaf blobs, respectively. With

both cases, root blobs contain an average of 12K cell instances,

and leaf blobs contain an average of 850 cell instances. We adapt

the open-source academic tool RePlAce [6] [43] to perform the



Table 5: Comparison among values of DBi for Louvain and hMetis.

Design
Louvain hMetis (2-way part) hMetis (k-way part)

# clusters DBi # clusters 10% 20% 40% # clusters 10% 20% 40%

jpeg_encoder 52 1.94 64 2.39 1.71 2.81 52 2.18 1.51 2.17

ldpc 18 2.29 16 9.27 4.36 12.94 18 7.84 12.60 35.86

netcard 21 1.95 16 1.39 1.32 2.46 21 1.29 1.72 2.38

leon3mp 30 1.04 32 2.61 1.47 3.51 30 2.33 1.55 3.80

Avg 1.81 3.91 2.22 5.43 3.41 4.34 11.05

Table 6: Runtimes (s) of the experiments in Table 5.

Design Louvain
hMetis (2-way part) hMetis (k-way part)

10% 20% 40% 10% 20% 40%

jpeg_encoder 2.4 13.5 13.6 14.3 13.9 14.2 14.4

ldpc 2.7 33.6 28.7 35.3 30.9 28.3 43.7

netcard 54.9 208.2 227.4 227.2 207.6 215.6 232.3

leon3mp 72.9 392.6 302.5 321.1 314.4 310.4 325.7

Table 7: Increase in DBi for Louvain and hMetis with a 2:1

floorplan.
Design Louvain hMetis

jpeg_encoder 1.46 1.35

ldpc 1.03 1.44

netcard 2.25 1.15

leon3mp 1.04 1.15

Avg 1.44 1.27

blob placement. In doing so, we inflate the blob dimensions by

20% and 30% for netcard and leon3mp, respectively, to simulate the

utilization settings from the original placement. The total runtime

for the hierarchical breakdown of the gate-level netlist into leaf

blobs, plus RePlAce placement, is 143s for netcard (250K instances)

and 200s for leon3mp (370K instances) using a single thread of a

2.1GHz Xeon server.5 Despite the intrinsic noise from the change

of placement tool, one can easily notice the similarity between the

original placements (Figures 6(c) and (d)) and our predictive blob

placements. Accordingly, we believe that our newmodularity-based

clustering has promise as the basis of early planning steps that can

improve efficiency of physical implementation.

6 CONCLUSIONS AND ONGOINGWORK

In this paper, we study netlist clustering in the context of enabling

early feedback at physical floorplanning and RTL planning stages

of design. Our new criterion for clustering assesses whether netlist

clusters “stay together” through final physical implementation. We

support evaluation of this criterion via several methods, including

the use of alpha shapes, Delaunay triangulation of a cluster’s placed

locations, and the Davies-Bouldin index. For the purpose of pre-

dicting cohesion in final layouts, we find that modularity-driven

clustering, as exemplified by the Louvain [2] algorithm, is clearly

superior to mincut- or Rent parameter-driven methods [21] [4] [41]

that have dominated the VLSI CAD literature. Importantly, the mod-

ularity metric allows identification of “natural” clusters in a given

graph without parameter tuning, and without imposition of balanc-

ing constraints; yet, it may also be applied hierarchically as needed.

We also show that the hypergraph-to-graph mapping is critical to

successful application of modularity-based clustering: our initial

study of mapping techniques suggests that (i) a weighting approach

of Lengauer [23] is effective in conjunction with Louvain, and

(ii) encoding topological proximity to I/Os significantly increases

5The hierarchical use of Louvain could be modified to trivially exploit availability of
multiple threads.

(a) jpeg_encoder 1:1 (b) ldpc 1:1

(c) netcard 1:1 (d) leon3mp 1:1

(e) jpeg_encoder 2:1 (f) ldpc 2:1 (g) netcard 2:1

(h) leon3mp 2:1

Figure 6: Visual comparison of Louvain clusters in floor-

plans with different aspect ratios.



(a) (b)

Figure 7: Blob placement of (a) netcard and (b) leon3mp.

Compare with Figures 6(c) and (d).

clustering quality. Comparisons with traditional hMetis-based clus-

tering [21] show that our Louvain-based approach achieves on

average 20% better correlation to actual netlist placements, as well

as 4× faster runtimes for our largest testcases. Last, we demonstrate

the potential of using modularity-based clustering with fast “blob

placement” of clusters to efficiently evaluate netlist and floorplan

viability in early stages of design.

Our ongoing work is in several directions. First, we believe that

our studies of the impact of hypergraph-to-graph mapping choices

(Section 4.1) point out the potential value of improved mappings.

We are exploring the use of machine learning to improve such map-

pings, potentially leading to localized variation of graph mapping

strategy in the netlist. Second, we are pursuing various extensions

of the “blob placement” flow described in Section 5. For example,

it is necessary to be able to handle large amounts of whitespace

in the given block floorplan. And, the clustering must ultimately

be sensitive to details of a floorplan with embedded macro blocks:

determining clusters that cohere in final placement may entail

dynamic fragmentation of “blobs” (into sub-blobs that will each

stay together) during the global placement iteration. Ultimately,

improved cluster placement could open the door to research on pre-

dicting timing and congestion from blob placement results. Finally,

we observe that the use of fast prediction of final placement – e.g.,

to drive floorplan changes or early (RT-level) physically-aware syn-

thesis – would likely lead to different final placements than those

we currently predict. How to manage this inherent chicken-egg

loop is an open question.
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